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Abstract— A novel predictive model for accurately determining 

filtrate mass correlation with respect with the input variables.  

The solution is based on training a neural network consisting of 

ten hidden layers using the Levenberg-Marcquard back 

propagation algorithm to recognize the correlation between the 

input variables, including the filtration time, and the filtrate 

mass. 

The main hurdle found was how to exactly organize the data in 

order to get the best Mean Square Error (MSE) and correlation 

(R) values to ensure a good prediction and a strong relationship 

between the input variables and the output variable which in this 

case is the Filtrate Mass. 

This Model is proven to work with an estimated error of about 

4.02% and 4.9% with a total sample size of 4974.  Each sample 

consisted of a row containing 114 input variables, including the 

time for reaching the target Filtrate Mass, and one output 

variable which is the Filtrate Mass. 

By using the proposed model, I demonstrated that with 

training sample of 3482 our model MSE is equal to 2.81284e-3     

(very close to zero) and the correlation (R) is equal to 0.99999      

(very strong, almost equal to 1).  This is without the need to 

retrain the network and with only 1000 epochs for training 

validation and testing.  Our validation sample size was 746 with a 

MSE equal to 3.40612e-3 (also very close to zero) and the 

correlation still 0.999999.  Our testing sample size was 746 with 

the MSE equal 2.49244e-3 and R is still 0.999999. 

The first stage for getting the model for this solution is to 

organize the data as a multidimensional array where the input 

variables are the known parameters of the compound including 

the time series of previously collected filtrate mass empirical 

data. 

Many Models were tried but the model with the best MSE and 

R values was the model in which the complete PSD was inserted 

as variables.  I decided to use the PSD particle size as a variable 

name and the volume in percent as the value for the variable and 

include it in the input array to the neural network.  The output 

array of the neural network consisted of the empirical data of the 

filtrate mass over time.  This model will work for n-modal 

compounds since all the information from the PSD is already 

taken into consideration with the model. 

This model can be implemented in many ways.  It could be 

made into a smart phone application using Java or the like, a 

computer application GUI or simply run from inside the 

Matlab® environment which was the one used for developing this 

model. 

IndexTerms—nanoparticles, nanocompounds, PSD, filtration, 

filtrate, solution, multi-modal, volume, time, neural networks, 

model, segregation. 

I. INTRODUCTION  

Nanomaterials and Nanoparticles are becoming part of 

everyday life in a broad spectrum of fields and applications in 

chemical industry, electronics, energy, bioindustry and medical 

technology,  just to name a few.  A Nanoparticle is defined as a 

nano-object with all three dimensions in the size range from 1 

to 100 nano meters [1].    

 

Numerous studies and analyses are trying to address the 

processing of Nanoparticles and nanocompounds as the 

technology tends to be a vital part of most known technologies 

to date.  One of the fields with utmost importance is the 

development of separation processes, but very little 

contributions have been made to the studies of membrane 

filtration of nanoparticle suspensions [2]. 

 

The mechanisms and methods for filtration of 

Nanomaterials and Nanoparticles are difficult because their 

behavior is not fully understood.  There is also a strong 

probability that these particles do not agglomerate on collision 

and their mean thermal velocity surpasses their capture velocity 

[3].  

 

The method presented in this paper solves this problem 

algorithmically for any type of filter topology.  Only the filter 

and nano-compound solution characteristics are needed to 

determine the volume of filtrate versus time. 

 



II. SOLUTIION DETAILS 

The model preprocessing includes the organization of the 

known data and empirical data for the compound.  This model 

is strongly dependent of the compound PSD since all of the 

PSD particle sizes and volumetric percentages are fed to the 

network as variables.  The elegancy of this model is the use of  

individual particle size as variables and the % volume in the 

PSD as the value for the variable.  This makes the model more 

robust since the whole PSD (independent of particle size) is 

included in the model. 

 

The model consists of an input (will depend on the total 

number of particle sizes in the PSD) that is fed into a neural 

network with 10 hidden layers and one output layer plus an 

output which consists of the Filtrate Mass variable.   The 

neural network topology is shown in Figure 1.  This figure 

shows an input of 114 since the parameter data plus the PSD 

values added up to 114 variables. 

 

 
Fig. 1: Neural Network Topology 

III. INPUT ORGANIZATION 

The input variables to be fed to the Neural Network were 

organized into a single array of variable number columns and 

variable number of rows.  I called this array nn_input.  This 

array consists of all the known and simple parameters for the 

compound.  The variable names are the column labels for each 

case in the following order: 

 

1. Filter diameter 

2. Filter area 

3. Filtration temperature 

4. Filtrate density 

5. Viscosity n-butanol 

6. Viscosity water 

7. Volume fraction n-butanol (solids free) 

8. Volume fraction water (solids free) 

9. Viscosity saturated solution 

10. Mass of dry cake from filtration 

11. Solvent loss on drying of wet cake 

12. Filtration pressure 

13. Time(s) 

14. PSD Particle Size 1 (um) 

15. PSD Particle Size 2 (um) 

16. . 

17. . 

18. .M.  PSD Particle Size N (um) 

 

Please note that the nn_input array is a variable size array 

of size M Columns and N rows (number of data points to be 

fed into the neural network) since it will depend on the total 

number of particle sizes in the PSD and the number of samples 

in our empirical or known  data.  Also note that the values for 

PSD Particle Size 1 (um) to PSD Particle Size N (um) columns 

are the Volume (%) in the PSD. 

 

Other known variables could be included in the nn_input 

array if they are known would help on improving the 

performance of the network. 

IV. THE OUTPUT VARIABLE 

The output variable is as simple as that is an array of 1 

column by M rows containing the Filtrate Mass (g) variable 

at specific times. 

V. NEURAL NETWORK PERFORMANCE 

The proposed model was tested with the empirical data 

from two types of filter examples.   Several tools were used 

but the one found most suitable for data manipulation and 

neural network implementation was Matlab® Release 

2012b using the Neural Network Toolbox.  A portion of the 

data was used as training data (70 %), 15% of the data was 

used for validation and the other 15% of the data was used 

for testing the network.   The nn_input array consisted of 

114 variables (columns) and 4974 samples (rows).  Figure 2 

shows the percentages and actual number of samples for 

filter one data.  This example was tested from 0 time to the 

Maximum time provided which was 2626 seconds. 

 

 
Fig. 2.  Percentages and number of samples for Training 

Validation and Testing of the Neural Network for Example 1 

 

Figure 3 is the explanation of the three kinds of samples 

that were used in the neural network training, evaluation 

and testing.  The samples were selected randomly for each 

kind of samples 

 

 
Fig.3. Explanation of the Kind of Samples for Performance 

Measurement 

 



     After the input (nn_input) and output (nn-output) data 

was organized.  This information was fed to the neural 

network.  I included the Matlab® 2012b script for finding 

the MSE and correlation between the inputs and outputs for 

Training, Validation and Testing. 

 

The following is the Matlab® script.  If the reader wants to 

evaluate the network with their own data, the data 

(nn_input and nn_output) shall be in the Matlab® 

workspace already and the following code can be copied 

and pasted into a new Matlab® script and run it.  You must 

be aware that you must have the Neural Network Toolbox 

installed.  I had to develop a tool to organize the data into 

the nn_input and nn_output from the empirical data taken at 

the laboratory.  You must do the same with your own data. 

 

VI. MATLAB® SCRIPT 

This section describes the Matlab® code for    

Replicating the experiment with user data: 

 

%Solve an Input-Output Fitting problem with a Neural 

Network 

% This script assumes these variables are defined: 

% 

%   nn_input - input data. 

%   nn_output - target data. 

  

inputs = nn_input'; 

targets = nn_output'; 

  

% Create a Fitting Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize); 

  

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.inputs{1}.processFcns = 

{'removeconstantrows','mapminmax'}; 

net.outputs{2}.processFcns = 

{'removeconstantrows','mapminmax'}; 

  

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help 

nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% For help on training function 'trainlm' type: help trainlm 

% For a list of all training functions type: help nntrain 

net.trainFcn = 'trainlm';  % Levenberg-Marquardt 

  

% Choose a Performance Function 

% For a list of all performance functions type: help 

nnperformance 

net.performFcn = 'mse';  % Mean squared error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

  'plotregression', 'plotfit'}; 

  

  

% Train the Network 

[net,tr] = train(net,inputs,targets); 

  

% Test the Network 

outputs = net(inputs); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs) 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = targets .* tr.trainMask{1}; 

valTargets = targets  .* tr.valMask{1}; 

testTargets = targets  .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,outputs) 

valPerformance = perform(net,valTargets,outputs) 

testPerformance = perform(net,testTargets,outputs) 

  

% View the Network 

view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, plotfit(net,inputs,targets) 

%figure, plotregression(targets,outputs) 

%figure, ploterrhist(errors) 

 

VII. NEURAL NETWORK PERFORMANCE  

I included some of the plots from my multiple runs in the 

following sections.  Many trials were performed to optimize 

the network for better performance by adding more neurons, 

more layers and varying the testing validation and training 

sample sizes. But it turned out that 1000 neuron network and a 

10 neuron network will have almost the same performance 

while the 10 neuron network will have a solution within a 

reasonable time frame (around 1 minute with almost 5000 rows 

and 115 variables).  So I decided to present the solution with a 

10 neuron for this reason.  Changing the sample size gave me 

almost the same performance but the optimum levels are the 

ones presented in this solution. 

 

This neural network was run for 1000 epochs.  This section 

includes the charts for performance at 22 epochs and 1000 

epochs and shows a very fast network convergence into the 

final values in a very short time.  The network convergence is 

very close to the final value during the first ten iterations while 



the maximum performance is achieved very close to the four 

hundredth iteration. 

 

 
Fig. 4. Validation Performance at epoch 22 

 

A. Prediction Error 

The error histogram presented in the next figure shows that 

the error for the training, validation and test was between 

4.02% and 4.9% which is an acceptable error.  

 

 
Fig. 5. Validation Performance at epoch 1000 

 

B. Regression Plot 

The following plots show a regression plot for the training, 

validation and test for output vs. target.  There is another plot 

for the combined correlations for validation, training and test 

sets showing n almost perfect correlation between the outputs 

of the network vs. the target value of the Filtrate Mass variable. 

VIII. CONCLUSIONS 

A novel predictive model for accurately determining filtrate mass 

versus time was developed.  The solution is based on training a 

neural network consisting of ten hidden layers using the Levenberg-

Marcquard back propagation algorithm to recognize the correlation 

between the input variables, including the filtration time, and the 

filtrate mass. 

The Network was trained with 3482 random samples, validated 

with 746 random samples and tested with 746 random samples from 

empirical data for two different types of filter topologies. 

 

 
 

Fig.  6. Error Histogram with 20 Bins 

 
The first stage for getting the model for this solution is to organize 

the data as a multidimensional array where the input variables are the 

known parameters of the compound including the time series of 

previously collected filtrate mass empirical data. 

This Model is proven to work with an estimated error of about 

4.02% and 4.9% with a total sample size of 4974.  Each sample 

consisted of a row containing 114 input variables, including the time 

for reaching the target Filtrate Mass, and one output variable which is 

the Filtrate Mass. 

 

 
Fig. 7. Regression Analysis Results for Training and Validation 

 

 



The Network was trained with 3482 random samples and validated 

with 746 random samples and tested with 746 random samples from 

empirical data for two different types of filter topologies. 

This model demonstrated that with training sample of 3482 our 

model MSE is equal to 2.81284e-3(very close to zero) and the 

correlation (R) is equal to 0.99999(very strong, almost equal to 1).  

This is without the need to retrain the network and with only 1000 

epochs for training validation and testing.  Our validation sample size 

was 746 with a MSE equal to 3.40612e-3 (also very close to zero) 

and the correlation still 0.999999.  Our testing sample size was 746 

with the MSE equal 2.49244e-3 and R is still 0.999999.  All this data 

can be seen graphically in Figures 6 (error histogram)  and 7 

(regression analysis), while the demonstration of a very fast 

convergence to the final values can be seen in figures 4 and 5. 

The first stage for getting the model for this solution is to organize 

the data as a multidimensional array where the input variables are the 

known parameters of the compound including the time series of 

previously collected filtrate mass empirical data. 
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